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I) Examples and motivations

Compromise search in multiobjective optimization

Equity in multiagent assignment problems

Robustness in optimization under uncertainty

Risk-averse optimization

Examples and motivations
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EX1: Path planning: a multicriteria problem
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Compromise (Tchebycheff)

2, 20, 3528 ☺
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Compromise search in multiobjective 
(combinatorial) optimization
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Compromise search in multiobjective 
(combinatorial) optimization

Augmented
Weigthed
Tchebycheff
distance
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Solution 1

Σ=32   min = 7

2 reviewers per paper

Solution 2
Σ=31   min = 10

EX 2: Fairness in multiagent
assignment problems

14

EX3: Robustness and optimization
under total uncertainty

1 - Examples and motivations Spanning trees
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EX4:  Knapsack problem under risk
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EX4:  Knapsack problem under risk
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EX4:  Knapsack problem under risk

Also a vector-valued shortest path problem
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Preference-based combinatorial optimization
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Basic preference models:
Pareto and weak Pareto Optimality
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Some references in multiobjective optimization
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The number of Pareto-optimal solutions exponentially grows with 
the size of the graph (number of nodes)

Pareto-optimal paths: an intractable problem

Pareto-optimal trees: an intractable problem
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Preference models for vector optimization
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Preference-based optimization: 
a research program

Pareto εεεε-Pareto Lorenz SSD EU Tcheb OWA WOWA RDU Choquet
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Approximation of Pareto-optimal paths

Pareto εεεε-Pareto Lorenz SSD EU Tcheb OWA WOWA RDU Choquet
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Approximated dominance
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Approximation = covering of the Pareto set

Main result

28
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Existence of covering with bounded size (PY00)

30

An example using Hansen’s graphs
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Project selection, product design, team configuration, resource allocation…

[Perny et Spanjaard, 

ECAI’08]

Application to biobjective knapsack problems

32

Lorenz-optimal paths

Pareto εεεε-Pareto Lorenz SSD EU Tcheb OWA WOWA RDU Choquet
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Aim: favouring well-balanced cost distributions

2 – A decision theoretic approach

34

Generalized Lorenz dominance

2 – A decision theoretic approach

• Lorenz dominance refines Pareto dominance
• Favours well-balanced solutions (transfer principle)

(10,  10, 10)  >L (12,  9, 10)   because (10,  20, 30)  >P (12,  22, 31)

P L
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Complexity issues for L-optimal paths

4 – Algorithms
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L-optimal paths and the Bellman principle

L=(3, 5) L=(4, 5) L=(5,9) L= (6,9)

4 – Algorithms
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A simple label-setting algorithm
based on MOA* 

5 – Numerical tests

(13, 9)

(11, 11)

[Martins’84,StewWhite’91]

L= (12,20)

L= (13,22)

L= (11,22) P L
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Numerical tests for L-optimal paths

5 – Numerical tests

# L-opt        time (s)

(random instances, graph density ~ 50%)

[Perny and Spanjaard, UAI’03]
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Refining Lorenz Dominance: OWA

2 – A decision theoretic approach

x is strictly preferred to y          iff OWA(x) < OWA(y)

Example: w1=3/6   w2=2/6    w3=1/6

OWA(10, 10, 10) = 10

OWA(4, 16, 10) = (48+20+4)/6 = 72/6=12

40

The OWA-optimal spanning tree problem
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OWA-optimal spanning tree problem

4 – Algorithms

OWA optimal edge:     a  (2, 2)

Completion:  a ∪ b  (5, 3) a ∪ c    (3, 5) l

b ∪ c  is clearly better with (4, 4)

Failure of the 
greedy approach

NP-hard in general (includes min-max optim)

2

f(x, y) = 0.75 max{x, y} + 0.25 min{x, y} 

2.5

2.5

OWA =4

OWA =4.5

An instance of the OWA-optimal 
spanning tree problem

(2,8)

(2,4)

(11,5)

(18,6) (5,13)

(3,9)

Min  W(x, y) = 0.75 max{x, y} + 0.25 min{x, y} 
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Key property

(2,8)

(18,6) (5,13)

(3,9)

0.75 max{7, 21} + 0.25 min{7, 21} = 17.5 ≥ 14

(2,4)

(11,5)

(7, 21) 14 
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The ranking approach for OWA optimal ST

Requires a stopping conditions

4 – Algorithms
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Stopping condition for ranking algorithms

45

OWA-optimal spanning tree

(7, 21)

17.5     14

(15, 17)

16.5 16

(16, 18)

17.5     17

An example with : W(x, y) = 0.75 max{x, y} + 0.25 min{x, y} ≥ 0.5 x + 0.5 y
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Choquet-optimal assignment for
multi-agents fair allocation problems

(conf. paper assignement, task allocation, Santa Claus pb)
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Fair assignment problems

As soon as m > 1, finding an OWA optimal assignment is NP-hard
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A MIP formulation for fair cost minimization

Lk(y) =

Final MIP Formulation

Ogryczak, 03

50

Numerical tests with Cplex for OWA assignment

Times (in seconds) for fair assignment problems with n agents, costs in {1, …, 20}

Times (in seconds) for paper assignment problems with n reviewers, 3n papers 

costs in {1, …, 5}, matrix density 20%, max nb of paper per agent = 5.
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RDU and Planning under Risk
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1

RDU, a generalization of EU
(Rank Dependent Expected Utility, Quiggin 81)

Non linear with respect to probabilities and payoffs

Fits to preferences observed in Allais and Ellsberg Examples
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Dynamic Decision Problems
are also combinatorial problems

20

10
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25

2
5

30

0.5

0.5

0.5

0.5

0.5

0.5

0.27

0.48
0.25

a

b

c

d

EU(a) = 2*0.27+ 5*0.48 + 30* 0.25 = 10.44

EU(bc) = 5*0.5+10*0.25 + 20*0.25 = 10

EU(bd) = 5*0.5+ 2*0.25 + 30*0.25 = 10.5

16

10.5

Backward induction

EU(c) = 10*0.5 + 20*0.5 = 15

EU(d) = 30*0.5 + 2*0.5 = 1610.44

Computational issues for 
RDU-optimal policies

An example of dynamic inconsistency
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a

b

c

d

RDU(a) = 2 + (5-2) ϕ(0.75) + (30-5) ϕ(0.25) = 11.41

RDU(bc) = 5 + (10-5) ϕ(0.5) + (20-10) ϕ(0.25) = 10.26

RDU(bd) = 2 + (5-2) ϕ(0.75) + (30-5) ϕ(0.25) = 11.46

But !

RDU(c) = 10 + (20-10) θ(0.5) = 14.35

RDU(d) = 2 + (30-2) θ(0.5) = 14.18

ϕ( p(Α) ) =
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Conclusion (main messages)
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Still some work to do…

Fair optimization in Multiagent MDPs

MDPs with non-EU models

Compromise Search in Multiobjective CSP

Multiobjective weighted Max-SAT
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